logo
Решение задач по эконометрике

Задание 3

1. Используя необходимое и достаточное условие идентификации, определить, идентифицировано ли каждое уравнение модели.

2. Определите тип модели.

3. Определите метод оценки параметров модели.

4. Опишите последовательность действий при использовании указанного метода.

5. Результаты оформите в виде пояснительной записки.

Модель денежного и товарного рынков:

Rt = a1+b12Yt+b14Mt+1,

Yt = a2+b21Rt+ b23It+ b25Gt+2,

It = a3+b31Rt+3,

где

R - процентные ставки;

Y - реальный ВВП;

M - денежная масса;

I - внутренние инвестиции;

G - реальные государственные расходы.

Решение

1. Модель имеет три эндогенные (RtYtIt) и две экзогенные переменные (MtGt).

Проверим необходимое условие идентификации:

1-е уравнение: D=1, H=2, D+1=H - уравнение идентифицировано.

2-е уравнение: D=1, H=1, D+1=2 - уравнение сверхидентифицировано.

3-е уравнение: D=1, H=2, D+1=H - уравнение идентифицировано.

Следовательно, необходимое условие идентифицируемости выполнено.

Проверим достаточное условие:

В первом уравнении нет переменных It, Gt

Строим матрицу:

It

Gt

2 ур.

b23

b23

3 ур.

0

0

det M = det , rank M =2.

Во втором уравнении нет переменных Mt

det M 0

В третьем уравнении нет переменных Yt, Mt, Gt

Строим матрицу:

det M /

Следовательно, достаточное условие идентифицируемости выполнено.

Система точно идентифицируема.

2. Найдем структурные коэффициенты модели.

Для этого:

Запишем систему в матричной форме, перенеся все эндогенные переменные в левые части системы:

Rt-b12Yt=a1+b12Mt

Yt-b21Rt-b23It=a2+b25Gt

It-b31Rt=a3

откуда

, и , , , .

Решаем систему относительно : . Найдем

, где -

алгебраические дополнения соответствующих элементов матрицы , - минор, т.е. определитель, полученный из матрицы вычеркиванием i-й строки и j-го столбца.

,

,

,

.

Поэтому

В данном случае эти коэффициенты можно найти значительно проще. Находим из второго уравнения приведенной системы и подставим его в первое уравнение этой системы. Тогда первое уравнение системы примет вид: , откуда , . Из третьего уравнения системы находим и подставляем во второе уравнение системы, получим: , решая его совместно с уравнением и, исключая , получим . Сравнивая это уравнение со вторым уравнением системы получим . Выражая из второго уравнения, и подставляя в третье системы (3.2), получим . Сравнивая это уравнение с третьим уравнением системы, получим .